Rare Kaon Decays

Milind Diwan

Brookhaven National Laboratory

June 7, 2005

Weak Interactions and Neutrinos 2005

Delphi, Greece

Historical Perspective

Kaon decays have a parallel history along with the development of the standard model.

Phase	Observation	BR sens	Physics
Early	Long life	1	Strangeness
	Decays of K^+ , K_L , K_S	0.1	Parity violation
1960s	Semileptonic	$> 10^{-3}$	Meson Dynamics
	Hadronic	$> 10^{-3}$	CP violation
1970-80s	FCNC	$> 10^{-7}$	GIM, Standard Model
1985-present	ϵ'/ϵ		Direct CP
	radiative decys	$\sim 10^{-8}$	Low Energy QCD
	Forbidden Searches	$\sim 10^{-11}$	Limits on Non-SM
Future	Precision	$\sim 10^{-13}$	SM or New

Progress has been in phases partly driven by acceleractor and detector technology. New phase is about to begin.

Focus of this talk:

- $K_L/K_S \to \pi^0 l^+ l^- \ [l = e, \mu]$
- $K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$

Conclusions

- Situation with K_L → π⁰l⁺l⁻ is getting less murky because of the measurements from NA48 of K_S → π⁰l⁺l⁻.
 Is it good enough for a dedicated experiment?
- Theory of $K^+ \to \pi^+ \nu \bar{\nu}$ ($\sim 10^{-10}$) and $K_L \to \pi^0 \nu \bar{\nu}$ ($\sim 3 \times 10^{-11}$) is very robust.

New understanding of how $K_L \to \pi^0 \nu \bar{\nu}$ has sensitivity to new physics. (Bryman, Buras, Isidori, Littenberg, TUM-HEP-583/05)

- JPARC has many LOI for rare decays. 2×10^{14} protons/3.4sec Pencil beam for $K_L \to \pi^0 \nu \bar{\nu}$. Stopping beam for $K^+ \to \pi^+ \nu \bar{\nu}$.
- $K^+ \to \pi^+ \nu \bar{\nu}$: NA48/3. Perhaps incorporate some CKM features: ring imaging, separated beam.
- $K^+\pi^0\nu\bar{\nu}$: KOPIO waiting for funding.